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Adding colour to microscopy!
• Multilayer from first STEM lecture
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Adding colour to microscopy!
• Multilayer from first STEM lecture
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EDX specanopy
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A way to probe chemistry
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Edges and peaks nomenclature
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Quiz
• EDXS: energy dispersive X-ray spectroscopy 

! intensity spectrum of X-ray peaks separated by energy 

• EELS: electron energy-loss spectroscopy 
! intensity spectrum of energy lost by transmitting e–

• We look at a sample containing Oxygen. We detect the Oxygen K-edge both in 
EELS and in EDXS. We find the transition at EEELS in EELS and EEDXS in EDXS 

• Do we have: 

- 1) EEELS > EEDXS 

- 2) EEELS = EEDXS 

- 3) EEELS < EEDXS
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X-ray generation

• 3 basic de-excitation process: 

- Radiative X-ray emission 

- Auger transitions/emission 

- Coster-Krönig transitions 

• Complex “cascade” effects 
possible 
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X-ray generation
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Light element atoms return to fundamental state mainly by Auger 
emission. For that reason, their K-lines are weak. In addition their 
low energy makes them easily absorbed.

To ionise an atom, the incident electron MUST have an 
energy larger than the core shell level U>1. To be efficient, 
it should have about twice the edge energy U>2. 

Relative efficiency of X-ray and Auger 
emission vs. atomic number for K lines
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Fluorescence yield
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Separation of EDX peaks
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EDS range ~ 0.3-20 keVEDX spectroscopy range ~0.3–20 keV
-
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Periodic table of X-ray peaks
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Periodic table of X-ray peaks
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The EDX spectrum
• Example spectrum from fuel cell sample containing O, Cr, Mn, Fe, Co 

• Spectrum of mostly well-defined peaks that e.g. can be fitted with Gaussians
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Bremsstrahlung background
• Continuum background of radiation emitted when e– velocity changed by atomic field 

• Stronger at low keV; depends on atomic number Z
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EDXS quantification
• To go from qualitative to quantitative: measure the intensities  of the X-ray peaks (area 

under the peak) 

• Typically apply “Cliff-Lorimer” approach where calculate ratios of constituent elements: 

                      

• : k-factor  
– determined empirically by: standards / theoretical calculations / empirical models 

• k-factors relate to probability of X-ray emission, probability of X-ray absorption and 
probability of unabsorbed X-ray being detected 

• Rule of thumb: quantification accuracy 10–20%. However, much better (e.g. 1%) can be 
achieved in certain cases 

• Detection limit: ~0.1 – a few at. %
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EDXS quantification
• Example: Cr-rich grain in fuel cell spinel layer
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Element Peak series At. %

Cr K 33.7
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Compared to SEM-EDXS
• (Can) Neglect correction factors for absorption and fluorescence in quantification 

• High energy e–-beam and thin sample ! X-rays emitted from narrow/confined 
volume of sample in beam path direction
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Pb(Zr,Ti)O3 scattering models

SEM: 30 keV beam, bulk sample STEM: 300 keV beam, thin sample
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EDX detection

• Modern standard is the Silicon Drift 
Detector (SDD) 

• Incident X-ray absorbed in Si creates 
e–-h+ pairs 

• Internal electric field drifts e– charge 
towards anode 

• Accumulated charge converted to 
voltage by a pre-amplifier 

• Quantity of charge carriers depends 
on X-ray energy 
! measured voltage corresponds to 
energy of detected X-ray
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Detective quantum efficiency (DQE)
• SDD detectors are compact and fast, but poor DQE for X-rays " 20 keV
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Detection geometry 

• Take care of spurious artefact X-ray peaks
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Detection geometry
• New standard is to use multiple SDDs to 

increase solid angle of collection and hence 
detection efficiency 

• For example: “Super-X” on Osiris, Titan with 4 
quadrants giving ~1 Sr solid angle of collection 

• State-of-the-art: Thermo Fisher Scientific Ultra 
with ~4 Sr
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STEM-EDXS data-cube
• EDXS map: acquire one spectrum per pixel position 

• Gives 3D data-cube of information with axes 

• Data can be post-processed – integrate area under peak to generate 
qualitative elemental map

(x, y)
(x, y, E)
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EDXS mapping: applications
• Multilayer sample – net counts maps
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EDXS mapping: applications
• Multilayer sample – integrated counts EDX spectra
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Why integrate counts across spatial ROI?
• In-Zn-O layer: 
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Integrated from 270 x 25 = 6’750 px2 Single pixel spectrum
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EDXS mapping: applications
• Fuel cell sample: Fe-doped MnCo2O4 spinel layer
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EDXS mapping: applications
• Fuel cell sample: Fe-doped MnCo2O4 spinel layer
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Element Peak series At. %

Cr K 33.7

Co K 13.8

Mn K 2.5

Fe K 0.1

O K 49.9

Element Peak series At. %

Cr K 12.5

Co K 18.3

Mn K 17.2

Fe K 2.2

O K 49.8



Atomic resolution EDXS with Cs-STEM
• Sample of Pb(Zr,Ti)O3 on SrTiO3
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Atomic resolution EDXS with Cs-STEM
• Sample of Pb(Zr,Ti)O3 on SrTiO3
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Atomic resolution EDXS with Cs-STEM
• Sample of Pb(Zr,Ti)O3 on SrTiO3
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Atomic resolution EDXS with Cs-STEM
• Sample of Pb(Zr,Ti)O3 on SrTiO3 – atomic resolution elemental mapping
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